Abstract

We introduce an efficient recursive scheme based on Adomian decomposition method (ADM) for solving nonlinear singular boundary value problems. This approach is based on a modification of the ADM; here we use all the boundary conditions to derive an integral equation before establishing the recursive scheme for the solution components. In fact, we develop the recursive scheme without any undetermined coefficients while computing the solution components. Unlike the classical ADM, the proposed method avoids solving a sequence of nonlinear algebraic or transcendental equations for the undetermined coefficients. The approximate solution is obtained in the form of series with easily calculable components. The uniqueness of the solution is discussed. The convergence and error analysis of the proposed method are also established. The accuracy and reliability of the proposed method are examined by four numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.