Abstract

Following recent result of L. M. Tóth [Tót21, Annales Henri Lebesgue, Volume 4 (2021)] we show that every 2Δ-regular Borel graph 𝒢 with a (not necessarily invariant) Borel probability measure admits approximate Schreier decoration. In fact, we show that both ingredients from the analogous statements for finite graphs have approximate counterparts in the measurable setting, i.e., approximate Kőnig’s line coloring Theorem for Borel graphs without odd cycles and approximate balanced orientation for even degree Borel graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.