Abstract

The low-rank alternating directions implicit (LR-ADI) iteration is a frequently employed method for efficiently computing low-rank approximate solutions of large-scale Lyapunov equations. In order to achieve a rapid error reduction, the iteration requires shift parameters whose selection and generation is often a difficult task, especially for nonsymmetric matrices in the Lyapunov equation. This article represents a follow up of Benner et al. [Electron. Trans. Numer. Anal., 43 (2014–2015), pp. 142–162] and investigates self-generating shift parameters based on a minimization principle for the Lyapunov residual norm. Since the involved objective functions are too expensive to evaluate and hence intractable, objective functions are introduced which are efficiently constructed from the available data generated by the LR-ADI iteration. Several numerical experiments indicate that these residual-minimizing shifts using approximated objective functions outperform existing precomputed and dynamic shift parameter selection techniques, although their generation is more involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.