Abstract
For the detection of gravitational waves the quantum mechanical properties of the detector have to be taken into account. Not all gravitational wave detectors allow a quantum nondemolition (QND) measurement. Continuous weak or fuzzy measurements are an alternative to study the evolution of a quantum mechanical system under the influence of an external field. In the present paper we investigate this alternative by applying it to a simplified system. We numerically simulate continuous fuzzy measurements of the oscillations of a two-level atom subjected to a resonant external light field. We thereby address the question whether it is possible to measure characteristic features of the evolution of a single quantum system in real time without relying on a QND scheme. We compare two schemes of continuous measurement: continuous measurement with constant fuzziness and with fuzziness changing in the course of the measurement. Because the sensitivity of the two-level atom to the influence of the measurement depends on the state of the atom, it is possible to optimize the continuous fuzzy measurement by varying its fuzziness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.