Abstract
Hashing-based model counting has emerged as a promising approach for large-scale probabilistic inference on graphical models. A key component of these techniques is the use of xor-based 2-universal hash functions that operate over Boolean domains. Many counting problems arising in probabilistic inference are, however, naturally encoded over finite discrete domains. Techniques based on bit-level (or Boolean) hash functions require these problems to be propositionalized, making it impossible to leverage the remarkable progress made in SMT (Satisfiability Modulo Theory) solvers that can reason directly over words (or bit-vectors). In this work, we present the first approximate model counter that uses word-level hashing functions, and can directly leverage the power of sophisticated SMT solvers. Empirical evaluation over an extensive suite of benchmarks demonstrates the promise of the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.