Abstract
AbstractWe consider the question of finding an approximate period in a given string S of length n. Let S′ be a periodic string closest to S under some distance metric. We consider this distance the error of the periodic string, and seek the smallest period that generates a string with this distance to S. In this paper we consider the Hamming and swap distance metrics. In particular, if S is the given string, and S′ is the closest periodic string to S under the Hamming distance, and if that distance is k, we develop an O(nkloglogn) algorithm that constructs the smallest period that defines such a periodic string S′. We call that string the approximate period of S under the Hamming distance. We further develop an O(n 2) algorithm that constructs the approximate period under the swap distance. Finally, we show an O(nlogn) algorithm for finite alphabets, and O(nlog3 n) algorithm for infinite alphabets, that approximates the number of mismatches in the approximate period of the string.KeywordsPeriod LengthString MatchApproximate PeriodCrew PramApproximate RepetitionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.