Abstract
The objective of this paper is twofold: (a) to find a natural example of a perturbed Lagrangian that has different partial Noether operators with symmetries different from those of the underlying Lagrangian. First we regard the Schwarzschild spacetime as a perturbation of the Minkowski spacetime and investigate the approximate partial Noether operators for this perturbed spacetime. It is shown that the Minkowski spacetime has 12 partial Noether operators, 10 of which are different from the 17 Noether symmetries for this spacetime. It is found that for the perturbed Schwarzschild spacetime we recover the exact partial Noether operators as trivial first-order approximate partial Noether operators and there is no non-trivial approximate partial Noether operator as for the Noether case. As a consequence we state a conjecture. (b) Then we prove a conjecture that the approximate symmetries of a perturbed Lagrangian form a subalgebra of the approximate symmetries of the corresponding perturbed Euler–Lagrange equations and illustrate it by our examples. This is in contrast to approximate partial Noether operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.