Abstract

In fair division of indivisible goods, finding an allocation that satisfies fairness and efficiency simultaneously is highly desired but computationally hard. We solve this problem approximately in polynomial time by modeling it as a bi-criteria optimization problem that can be solved efficiently by determining an approximate Pareto set of bounded size. We focus on two criteria: max-min fairness and utilitarian efficiency, and study this problem for the setting when there are only a few item types or a few agent types. We show in both cases that one can construct an approximate Pareto set in time polynomial in the input size, either by designing a dynamic programming scheme, or a linear-programming algorithm. Our techniques strengthen known methods and can be potentially applied to other notions of fairness and efficiency as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.