Abstract
A constrained periodic multiple-sensor scheduling problem is considered in this paper. For each sensor, constraints on dwell time and activation times are imposed. At each time instant, only one sensor can update its measurement with the estimator; and the objective is to minimize the average state estimation error. An approximation framework is proposed to calculate the objective function, which transforms the original scheduling problem into an Approximate Optimal Scheduling Problem (AOSP). An upper bound on the approximation error is presented to evaluate the performance of the framework. To solve the AOSP, a necessary condition is first proposed on the optimal schedules. When no constraints on activation times exist, a dynamic programming based algorithm is devised to identify the optimal schedule with polynomial computational complexity. When activation-time constraints exist, we show that the AOSPs can be solved by solving traveling salesman problems. Examples are provided to illustrate the proposed results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.