Abstract

Efforts in this paper seek to combine graph theory with adaptive dynamic programming (ADP) as a reinforcement learning (RL) framework to determine forward-in-time, real-time, approximate optimal controllers for distributed multi-agent systems with uncertain nonlinear dynamics. A decentralized continuous time-varying control strategy is proposed, using only local communication feedback from two-hop neighbors on a communication topology that has a spanning tree. An actor-critic-identifier architecture is proposed that employs a nonlinear state derivative estimator to estimate the unknown dynamics online and uses the estimate thus obtained for value function approximation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call