Abstract

Nonparametric quantile regression is a commonly used nonlinear quantile model. One general and popular approach is based on the use of kernels within a reproducing kernel Hilbert space (RKHS) framework, with the smoothing splines estimation as a special case. However, when the sample size n is large, the computational burden is heavy. Motivated by the recent advances in random projection for kernel nonparametric (mean) ridge regression (KRR), we consider an m-dimensional random projection approach for kernel quantile regression (KQR) with m≪n. We establish a theoretical result showing that the sketched KQR still achieves the minimax convergence rate when m is at least as large as the effective statistical dimension of the problem. Some Monte Carlo studies are carried out for illustration purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.