Abstract
This paper concerns the problem of adaptive output regulation for multivariable nonlinear systems in normal form. We present a regulator employing an adaptive internal model of the exogenous signals based on the theory of nonlinear Luenberger observers. Adaptation is performed by means of discrete-time system identification schemes, in which every algorithm fulfilling some optimality and stability conditions can be used. Practical and approximate regulation results are given relating the prediction capabilities of the identified model to the asymptotic bound on the regulated variables, which become asymptotic whenever a "right" internal model exists in the identifier's model set. The proposed approach, moreover, does not require "high-gain" stabilization actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.