Abstract

Two approaches to the non-Gaussian filtering problem are presented. The proposed filters retain the computationally attractive recursive structure of the Kalman filter and they approximate well the exact minimum variance filter in cases where either 1) the state noise is Gaussian or its variance small in comparison to the observation noise variance, or 2) the observation noise is Gaussian and the system is one step observable. In both cases, the state estimate is formed as a linear prediction corrected by a nonlinear function of past and present observations. Some simulation results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.