Abstract

Approximate computing has received significant attention as a promising strategy to decrease power consumption of inherently error-tolerant applications. Hardware approximation mainly targets arithmetic units, e.g. adders and multipliers. In this paper, we design new approximate hardware multipliers and propose the Partial Product Perforation technique, which omits a number of consecutive partial products by perforating their generation. Through extensive experimental evaluation, we apply the partial product perforation method on different multiplier architectures and expose the optimal configurations for different error values. We show that the partial product perforation delivers reductions of up to 50% in power consumption, 45% in area and 35% in critical delay. Also, the product perforation method is compared with state-of-the-art works on approximate computing that consider the Voltage Over-Scaling (VOS) and logic approximation (i.e. design of approximate compressors) techniques, outperforming them in terms of power dissipation by up to 17% and 20% on average respectively. Finally, with respect to the aforementioned gains, the error value delivered by the proposed product perforation method is smaller by 70% and 99% than the VOS and logic approximation methods respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.