Abstract

espanolComputational decision theory, model misspecification, D-open problem, Kullback–Leibler divergence, robustness, Bayesian nonparametrics EnglishDecisions based partly or solely on predictions from probabilistic models may be sensitive to model misspecification. Statisticians are taught from an early stage that “all models are wrong, but some are useful”; however, little formal guidance exists on how to assess the impact of model approximation on decision making, or how to proceed when optimal actions appear sensitive to model fidelity. This article presents an overview of recent developments across different disciplines to address this. We review diagnostic techniques, including graphical approaches and summary statistics, to help highlight decisions made through minimised expected loss that are sensitive to model misspecification. We then consider formal methods for decision making under model misspecification by quantifying stability of optimal actions to perturbations to the model within a neighbourhood of model space. This neighbourhood is defined in either one of two ways. First, in a strong sense via an information (Kullback–Leibler) divergence around the approximating model. Second, using a Bayesian nonparametric model (prior) centred on the approximating model, in order to “average out” over possible misspecifications. This is presented in the context of recent work in the robust control, macroeconomics and financial mathematics literature. We adopt a Bayesian approach throughout although the presentation is agnostic to this position.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.