Abstract

A theoretical model is derived for the prediction of eddy-current probe impedance changes caused by three-dimensional, surface-breaking flaws. Magnetic scalar potential theory and the surface impedance approximation are used to calculate fields on the flaw surface for arbitrary probe position and flaw geometry. Impedance changes are determined by a first-order perturbation calculation, with skin depth being the perturbation parameter. The end result is a relatively simple, three-dimensional model for simulating an eddy-current inspection. Numerical results for rectangular slots include maps of the impedance signals obtained in raster scan patterns and studies of skin-depth effects as a function of probe size, lift-off, and flaw dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.