Abstract
Recently, the application of compound distributions has increased due to the flexibility in fitting to actual data in various fields such as economics, insurance, etc. Poisson-half-logistic distribution is one of these distributions with an increasing-constant hazard rate that can be used in parallel systems and complementary risk models. Because of the complexity of the form of this distribution, it is not possible to obtain classical parameter estimates (such as MLE) by the analytical method for the location and scale parameters. We present a simple way of deriving explicit estimators by approximating the likelihood equations appropriately. This paper presents AMLE (Approximate MLE) method to obtain the location and scale parameters estimation. Using simulation, we show that this method is as efficient as the maximum likelihood estimators (MLEs), we obtain the variance of estimators from the inverse of the observed Fisher information matrix, and we see that when sample size increases bias and variance of these estimators, MSEs of parameters decrease. Finally, we present a numerical example to illustrate the methods of inference developed here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Pakistan Journal of Statistics and Operation Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.