Abstract

Algorithms for simulation and verification of Numerically Controlled (NC) machining programs are presented. Compared to NC simulation based on conventional solid modeling systems, these models are designed to give approximate results, but with a substantial decrease in computer time. The surfaces of the part are discretized into a Surface Point Set (SPS) with a point spacing dependent on cutting tool size and shape local surface curvature and the desired accuracy of the approximate simulation. The surface-surface intersection calculations of the solid modeling approach are replaced by the intersection of the surface of the tool movement envelope with straight lines emanating from the surface points. The methods are applicable to both 3 and 5 axis machining. Samples test cases are presented, and implementation and efficiency issues are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.