Abstract

Marine structures are subjected to complex loading histories and one of the most significant failure modes is fatigue. Accurate prediction of the fatigue life of marine structures is very important for both safe and economic design and operation. Now many researchers and engineers have realized that fatigue crack propagation theory can provide more rational basis to predict the fatigue life of metal structures. At the same time, more and more fatigue crack growth models are proposed along with a good understanding of metal fatigue mechanisms. However, it is difficult to determine a large number of model parameters, which restricts their use in practical engineering problems. Therefore, it is significant to study the approximate methods for estimating the model parameters in good fatigue crack growth models. In our previous work, an extended McEvily model for fatigue crack growth analysis of metal structures was proposed. This model shows promising capability to explain various fatigue phenomena. In order for the convenient use in estimating fatigue life of marine structures, the concepts and approximations of the model parameters are comprehensively studied in this paper. Based on that, more reasonable assumptions and empirical formulas to determine the parameters are recommended. The approximate method is validated by experimental results of several types of materials, which could be successfully used in simple and effective engineering analysis for marine structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.