Abstract

We present an approximate method for the numerical solution of linear singularly perturbed two point boundary value problems in ordinary differential equations with a boundary layer on the left end of the underlying interval. It is motivated by the asymptotic behavior of singular perturbation problems. The original problem is divided into inner and outer region problems. The reduced problem is solved to obtain the terminal boundary condition. Then, a new inner region problem is created and solved as a two point boundary value problem. In turn, the outer region problem is also modified and the resulting problem is efficiently treated by employing the trapezoidal formula coupled with discrete invariant imbedding algorithm. The proposed method is iterative on the terminal point. Some numerical experiments have been included to demonstrate its applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.