Abstract
This paper is devoted to consider the approximate solutions of the nonlinear water wave problem for a fluid layer of finite depth in the presence of gravity. The method of multiple‐scale expansion is employed to obtain the Korteweg‐de Vries (KdV) equations for solitons, which describes the behavior of the system for free surface between air and water in a nonlinear approach. The solutions of the water wave problem split up into two wave packets, one moving to the right and one to the left, where each of these wave packets evolves independently as the solutions of KdV equations. The solution of KdV equations is obtained analytically by using a reliable modification of Laplace decomposition method (LDM), namely, the modified Laplace decomposition method (MLDM) is presented. This procedure is a powerful tool for solving large amount of nonlinear problems. The proposed method provides the solution as a series which may converge to the exact solution of the problem. Also, the convergence analysis of the proposed method is given. Finally, we observe that the elevation of the water waves is in form of traveling solitary waves. The horizontal and vertical of the velocity components have nonlinear characters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.