Abstract

We present new algorithms for computing approximate quantiles of large datasets in a single pass. The approximation guarantees are explicit, and apply for arbitrary value distributions and arrival distributions of the dataset. The main memory requirements are smaller than those reported earlier by an order of magnitude. We also discuss methods that couple the approximation algorithms with random sampling to further reduce memory requirements. With sampling, the approximation guarantees are explicit but probabilistic, i.e. they apply with respect to a (user controlled) confidence parameter. We present the algorithms, their theoretical analysis and simulation results on different datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.