Abstract

We analyze likelihood-based identification of systems that are linear in the parameters from quantized output data; in particular, we propose a method to find approximate maximum-likelihood and maximum-a-posteriori solutions. The method consists of appropriate least-squares projections of the middle point of the active quantization intervals. We show that this approximation maximizes a variational approximation of the likelihood and we provide an upper bound for the approximation error. In a simulation study, we compare the proposed method with the true maximum-likelihood estimate of a finite impulse response model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call