Abstract
In nutritional epidemiology, dietary intake assessed with a food frequency questionnaire is prone to measurement error. Ignoring the measurement error in covariates causes estimates to be biased and leads to a loss of power. In this paper, we consider an additive error model according to the characteristics of the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct Study data, and derive an approximate maximum likelihood estimation (AMLE) for covariates with measurement error under logistic regression. This method can be regarded as an adjusted version of regression calibration and can provide an approximate consistent estimator. Asymptotic normality of this estimator is established under regularity conditions, and simulation studies are conducted to empirically examine the finite sample performance of the proposed method. We apply AMLE to deal with measurement errors in some interested nutrients of the EPIC-InterAct Study under a sensitivity analysisframework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.