Abstract

In this paper, we study a class of discrete-time mean-field games under the infinite-horizon risk-sensitive optimality criterion. Risk sensitivity is introduced for each agent (player) via an exponential utility function. In this game model, each agent is coupled with the rest of the population through the empirical distribution of the states, which affects both the agent’s individual cost and its state dynamics. Under mild assumptions, we establish the existence of a mean-field equilibrium in the infinite-population limit as the number of agents (N) goes to infinity, and we then show that the policy obtained from the mean-field equilibrium constitutes an approximate Nash equilibrium when N is sufficiently large.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.