Abstract

The formation of adiabatic shear bands in ductile metals under dynamic loading conditions is generally thought to result from a material instability, which is associated with a peak in the curve of engineering plastic flow stress vs. engineering shear strain. This instability arises from the effect of thermal softening, caused by irreversible adiabatic heating, which counteracts the tendency of the material to harden with increasing plastic strain. An approximate linear stability analysis of a one-dimensional rigid-thermoviscoplastic model, based on data taken from dynamic torsion experiments on thin-walled tubes of mild steel, shows that shear band formation in this situation can be interpreted as a bifurcation from a homogeneous simple shearing deformation which occurs at the peak in the homogeneous stress vs. strain curve. The asymptotic method of multiple scales is used to show that the growth rate of small perturbations on the homogeneous deformation is controlled by the ratio of the slope of the homogeneous stress vs. strain curve to the material viscosity, i.e., the rate of change of the plastic flow stress with respect to the strain-rate. In addition, it is shown that this growth rate is essentially independent of wavelength in any small perturbation. Numerical methods are used to show that this growth rate beyond the bifurcation point may not be sufficiently large for the model to account for the experimental data, and some suggestions are made on how to modify the constitutive equation so that it better fits the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.