Abstract

In this note, we propose two new approximate Jacobian control laws with task-space damping for setpoint control of robot manipulators. The proposed controllers do not require exact knowledge of the Jacobian matrix and dynamics of the robots. We will show that the end-effector's position converges to a desired position in a finite task space even when the kinematics and Jacobian matrix are uncertain. Experimental results are presented to illustrate the performance of the proposed controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.