Abstract
This paper introduces a factorization for the inverse of discrete Fourier integral operators of size N×N that can be applied in quasi-linear time. The factorization starts by approximating the operator with the butterfly factorization. Next, a hierarchical matrix representation is constructed for the hermitian matrix arising from composing the Fourier integral operator with its adjoint. This representation is inverted efficiently with a new algorithm based on the hierarchical interpolative factorization. By combining these two factorizations, an approximate inverse factorization for the Fourier integral operator is obtained as a product of O(logN) sparse matrices with O(N) entries. The resulting approximate inverse factorization can be used as a direct solver or as a preconditioner. Numerical examples on 1D and 2D Fourier integral operators, including a generalized Radon transform, demonstrate the performance of this new approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.