Abstract

A point cloud as an information-intensive 3D representation usually requires a large amount of transmission, storage and computing resources, which seriously hinder its usage in many emerging fields. In this paper, we propose a novel point cloud simplification method, Approximate Intrinsic Voxel Structure (AIVS), to meet the diverse demands in real-world application scenarios. The method includes point cloud pre-processing (denoising and down-sampling), AIVS-based realization for isotropic simplification and flexible simplification with intrinsic control of point distance. To demonstrate the effectiveness of the proposed AIVS-based method, we conducted extensive experiments by comparing it with several relevant point cloud simplification methods on three public datasets, including Stanford, SHREC, and RGB-D scene models. The experimental results indicate that AIVS has great advantages over peers in terms of moving least squares (MLS) surface approximation quality, curvature-sensitive sampling, sharp-feature keeping and processing speed. The source code of the proposed method is publicly available. (https://github.com/vvvwo/AIVS-project).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.