Abstract

We show that recent results of Coppersmith, Boneh, Durfee and Howgrave-Graham actually apply in the more general setting of (partially) approximate common divisors. This leads us to consider the question of “fully” approximate common divisors, i.e. where both integers are only known by approximations. We explain the lattice techniques in both the partial and general cases. As an application of the partial approximate common divisor algorithm we show that a cryptosystem proposed by Okamoto actually leaks the private information directly from the public information in polynomial time. In contrast to the partial setting, our technique with respect to the general setting can only be considered heuristic, since we encounter the same “proof of algebraic independence” problem as a subset of the above authors have in previous papers. This problem is generally considered a (hard) problem in lattice theory, since in our case, as in previous cases, the method still works extremely reliably in practice; indeed no counter examples have been obtained. The results in both the partial and general settings are far stronger than might be supposed from a continued-fraction standpoint (the way in which the problems were attacked in the past), and the determinant calculations admit a reasonably neat analysis.KeywordsGreatest common divisorapproximationsCoppersmith’s methodcontinued fractionslattice attacks

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.