Abstract

AbstractWe give conditions for the convergence of approximate identities, both pointwise and in norm, in variable L p spaces. We unify and extend results due to Diening [8], Samko [18] and Sharapudinov [19]. As applications, we give criteria for smooth functions to be dense in the variable Sobolev spaces, and we give solutions of the Laplace equation and the heat equation with boundary values in the variable L p spaces. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.