Abstract

We study a problem of option replication under constant proportional transaction costs in models where stochastic volatility and jumps are combined to capture the market's important features. Assuming some mild condition on the jump size distribution, we show that transaction costs can be approximately compensated by applying the Leland adjusting volatility principle and the asymptotic property of the hedging error due to discrete readjustments. In particular, the jump risk can be approximately eliminated, and the results established in continuous diffusion models are recovered. The study also confirms that, for the case of constant trading cost rate, the approximate results established by Kabanov and Safarian [Finance Stoch., 1 (1997), pp. 239--250] and by Pergamenschikov [Ann. Appl. Probab., 13 (2003), pp. 1099--1118] are still valid in jump-diffusion models with deterministic volatility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.