Abstract
In the present study, the approximate fractal morphometry of spherical-type essential oil microemulsions was performed. The geometric fractal characterization was carried out by a recently published continuous half-fractal model which allowed to model microemulsions as systems in their stable thermodynamic equilibrium phase with high degree of homogeneity. Regarding the characteristic of high homogeneity an equation was obtained to roughly describe the volume fractal dimension and the fractal volume of two special cases elaborated from Rosmarinus officinalis and Melaleuca alternifolia previously investigated. In addition, referring to the characteristic of high homogeneity, it was possible to approximate the fractal dimension of area and the fractal area for each microemulsion. Our numerical estimates showed coherence with the principles of Hausdorff-Besicovitch geometry and with the experimental evidence about the physical dimension as a non-integer dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.