Abstract

The emerging field of nonlinear control theory has attempted to alleviate the problem associated with applying linear control theory to nonlinear problems. A segment of nonlinear control theory, called exact feedback linearization, has proven useful in a class of problems satisfying certain controllability and integrability constraints. Approximate feedback linearization has enlarged this class by weakening the integrability conditions, but application of both these techniques remains limited to problems in which a series of linear partial differential equations can easily be solved. By use of the idea of normal forms, from dynamical systems theory, an efficient method of obtaining the necessary coordinate transformation and nonlinear feedback rules is given. This method, which involves the solution of a set of linear algebraic equations, is valid for any dimensional system and any order nonlinearity provided it meets the approximate feedback linearization conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.