Abstract

Computation of approximate factors for the inverse constitutes an algebraic approach to preconditioning large and sparse linear systems. In this paper, the aim is to combine standard preconditioning ideas with sparse approximate inverse approximation, to have dense approximate inverse approximations (implicitly). For optimality, the approximate factoring problem is associated with a minimization problem involving two matrix subspaces. This task can be converted into an eigenvalue problem for a Hermitian positive semidefinite operator whose smallest eigenpairs are of interest. Because of storage and complexity constraints, the power method appears to be the only admissible algorithm for devising sparse–sparse iterations. The subtle issue of choosing the matrix subspaces is addressed. Numerical experiments are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call