Abstract

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for uncovering cellular heterogeneity. However, the high costs associated with this technique have rendered it impractical for studying large patient cohorts. We introduce ENIGMA (Deconvolution based on Regularized Matrix Completion), a method that addresses this limitation through accurately deconvoluting bulk tissue RNA-seq data into a readout with cell-type resolution by leveraging information from scRNA-seq data. By employing a matrix completion strategy, ENIGMA minimizes the distance between the mixture transcriptome obtained with bulk sequencing and a weighted combination of cell-type-specific expression. This allows the quantification of cell-type proportions and reconstruction of cell-type-specific transcriptomes. To validate its performance, ENIGMA was tested on both simulated and real datasets, including disease-related tissues, demonstrating its ability in uncovering novel biological insights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.