Abstract
The approximate entropy (ApEn) of signals in the electroencephalogram (EEG) was evaluated in 8 healthy volunteers and in 10 patients with absence epilepsy, both during seizure-free and seizure intervals. We estimated the nonlinearity of each 3-sec EEG segment using surrogate data methods. The mean (+/- SD) ApEn in EEG was 0.83 +/- 0.22 in healthy subjects awake with eyes closed. It was significantly lower during epileptic seizures (0.48 +/- 0.05) than during seizure-free intervals (0.80 +/- 0.13) (P < 0.001). Nonlinearity was clearly detected in EEG signals from epileptic patients during seizures but not during seizure-free intervals or in EEG signals from healthy subjects. The ApEn of EEG signals estimated over consecutive intervals could serve to determine pathological brain activity such as that occurring during absence epilepsy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.