Abstract

This study investigates the indications of non-linear dynamic structures in electroencephalogram signals. The iterative amplitude adjusted surrogate data method along with seven non-linear test statistics namely the third order autocorrelation, asymmetry due to time reversal, delay vector variance method, correlation dimension, largest Lyapunov exponent, non-linear prediction error and approximate entropy has been used for analysing the EEG data obtained during self paced voluntary finger-movement. The results have demonstrated that there are clear indications of non-linearity in the EEG signals. However the rejection of the null hypothesis of non-linearity rate varied based on different parameter settings demonstrating significance of embedding dimension and time lag parameters for capturing underlying non-linear dynamics in the signals. Across non-linear test statistics, the highest degree of non-linearity was indicated by approximate entropy (APEN) feature regardless of the parameter settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.