Abstract

This study presents a fully decentralised robust optimisation (RO) approach for multi-area economic dispatch (MA-ED) in the presence of wind power uncertainty. Unlike traditional algorithms, the authors formulate this MA-ED problem as dynamic programming problem, and decompose the centralised robust MA-ED problem into a series of sub-problems based on approximate dynamic programming algorithm. The value functions are proposed for each area to iteratively estimate the impacts of its dispatches on the dispatches of other areas which make decisions subsequently. The proposed algorithm does not require a central operator but only needs to exchange a small amount of information among neighbouring areas to achieve fully decentralised decision-making. It is practical in cases where the centralised operator cannot be implemented considering the dispatch independence and the detailed data of one area is unavailable considering the privacy. Additionally, the accuracy, adaptability and computational efficiency of the proposed algorithm are illustrated using numerical simulations on two test systems and an actual power system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.