Abstract
The problem of allocating limited resources to maintain components of a multicomponent system, known as selective maintenance, is naturally formulated as a high-dimensional Markov decision process (MDP). Unfortunately, these problems are difficult to solve exactly for realistically sized systems. With this motivation, we contribute an approximate dynamic programming (ADP) algorithm for solving the selective maintenance problem for a series-parallel system with binary-state components. To the best of our knowledge, this paper describes the first application of ADP to maintain multicomponent systems. Our ADP is compared, using a numerical example from the literature, against exact solutions to the corresponding MDP. We then summarize the results of a more comprehensive set of experiments that demonstrate the ADP's favorable performance on larger instances in comparison to both the exact (but computationally intensive) MDP approach and the heuristic (but computationally faster) one-step-lookahead approach. Finally, we demonstrate that the ADP is capable of solving an extension of the basic selective maintenance problem in which maintenance resources are permitted to be shared across stages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.