Abstract

We propose and investigate three approaches to a fluid-fluid interaction problem with a nonlinear rigid lid condition on the joint boundary when one or both flows are at a high Reynolds number. To do so, we try to combine the Approximate Deconvolution Model of turbulence with a partitioned method of [1], called the Geometric Averaging. The nonlinear interface condition poses an extra difficulty, as there are different approaches to modeling the Reynolds stresses on the joint boundary of the two flows. We investigate three such approaches; all three models are shown to be quantitatively similar when tested on a model with a manufactured solution. Two of them are proven to be unconditionally stable, and yet it is the third model that clearly outperforms the others in the most computationally appealing case when high Reynolds number flows are modeled on a coarse mesh with large filtering width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.