Abstract

Many practical systems in physical and technical sciences have impulsive dynamical behaviors during the evolution process which can be modeled by impulsive differential equations. In this paper, we prove the approximate controllability of control systems governed by a class of impulsive neutral stochastic functional differential system with state-dependent delay in Hilbert spaces. Sufficient conditions for approximate controllability of the control systems are established under the natural assumption that the corresponding linear system is approximately controllable. The results are obtained by using semigroup theory, stochastic analysis techniques, fixed point approach and abstract phase space axioms. An example is provided to illustrate the application of the obtained results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call