Abstract
We consider the one dimensional semilinear reaction-diffusion equation, governed in Ω = (0,1) by controls, supported on any subinterval of (0, 1) , which are the functions of time only. Using an asymptotic approach that we have previously introduced in [9], we show that such a system is approximately controllable at any time in both L 2 (0,1)( and C 0 [0,1], provided the nonlinear term f = f(x,t, u) grows at infinity no faster than certain power of log |u| . The latter depends on the regularity and structure of f (x, t, u) in x and t and the choice of the space for controllability. We also show that our results are well-posed in terms of the “actual steering” of the system at hand, even in the case when it admits non-unique solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Control, Optimisation and Calculus of Variations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.