Abstract
As many digital signal processing (DSP) applications such as digital filtering are inherently error-tolerant, approximate computing has attracted significant attention. A multiplier is the fundamental component for DSP applications and takes up the most part of the resource utilization, namely power and area. A multiplier consists of partial product arrays (PPAs) and compressors are often used to reduce partial products (PPs) to generate the final product. Approximate computing has been studied as an innovative paradigm for reducing resource utilization for the DSP systems. In this paper, a 4:2 approximate compressor-based multiplier is studied. Approximate 4:2 compressors are designed with a practical design criterion, and an approximate multiplier that uses both truncation and the proposed compressors for PP reduction is subsequently designed. Different levels of truncation and approximate compression combination are studied for accuracy and electrical performance. A practical selection algorithm is then leveraged to identify the optimal combinations for multiplier designs with better performance in terms of both accuracy and electrical performance measurements. Two real case studies are performed, i.e., image processing and a finite impulse response (FIR) filter. The design proposed in this paper has achieved up to 16.96% and 20.81% savings on power and area with an average signal-to-noise ratio (SNR) larger than 25[Formula: see text]dB for image processing; similarly, with a decrease of 0.3[Formula: see text]dB in the output SNR, 12.22% and 30.05% savings on power and area have been achieved for an FIR filter compared to conventional multiplier designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.