Abstract

We develop a characterization of fading models, which assigns a number called logarithmic Jensen’s gap to a given fading model. We show that as a consequence of a finite logarithmic Jensen’s gap, an approximate capacity region can be obtained for fast fading interference channels (FF-ICs) for several scenarios. We illustrate three instances where a constant capacity gap can be obtained as a function of the logarithmic Jensen’s gap. First, for an FF-IC with neither feedback nor instantaneous channel state information at transmitter (CSIT), if the fading distribution has finite logarithmic Jensen’s gap, we show that a rate-splitting scheme based on the average interference-to-noise ratio can achieve its approximate capacity. Second, we show that a similar scheme can achieve the approximate capacity of FF-IC with feedback and delayed CSIT, if the fading distribution has finite logarithmic Jensen’s gap. Third, when this condition holds, we show that point-to-point codes can achieve approximate capacity for a class of FF-ICs with feedback. We prove that the logarithmic Jensen’s gap is finite for common fading models, including Rayleigh and Nakagami fading, thereby obtaining the approximate capacity region of FF-IC with these fading models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.