Abstract
We apply several state-of-the-art techniques developed in recent advances of counting algorithms and statistical physics to study the spatial mixing property of the two-dimensional codes arising from local hard (independent set) constraints, including: hard-square, hard-hexagon, read/write isolated memory (RWIM), and non-attacking kings (NAK). For these constraints, the strong spatial mixing would imply the existence of polynomial-time approximation scheme (PTAS) for computing the capacity. It was previously known for the hard-square constraint the existence of strong spatial mixing and PTAS. We show the existence of strong spatial mixing for hard-hexagon and RWIM constraints by establishing the strong spatial mixing along self-avoiding walks, and consequently we give PTAS for computing the capacities of these codes. We also show that for the NAK constraint, the strong spatial mixing does not hold along self-avoiding walks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.