Abstract

The paper considers the problem of approximate construction of reachability sets for a linear control system, when the control action is constrained simultaneously by geometric and several integral constraints. A variant of the transition from a continuous to a discrete system is proposed by uniformly dividing the time interval and replacing the controls at the step of dividing them with their mean values. The convergence of the reachability set of the approximating system to the reachability set of the original system in the Hausdorff metric is proved as the discretization step tends to zero, and an estimate is obtained for the rate of convergence. An algorithm for constructing the boundary of reachable sets based on solving a family of conic programming problems is proposed. Numerical simulation has been carried out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.