Abstract

Bayes’ linear analysis and approximate Bayesian computation (ABC) are techniques commonly used in the Bayesian analysis of complex models. In this article, we connect these ideas by demonstrating that regression-adjustment ABC algorithms produce samples for which first- and second-order moment summaries approximate adjusted expectation and variance for a Bayes’ linear analysis. This gives regression-adjustment methods a useful interpretation and role in exploratory analysis in high-dimensional problems. As a result, we propose a new method for combining high-dimensional, regression-adjustment ABC with lower-dimensional approaches (such as using Markov chain Monte Carlo for ABC). This method first obtains a rough estimate of the joint posterior via regression-adjustment ABC, and then estimates each univariate marginal posterior distribution separately in a lower-dimensional analysis. The marginal distributions of the initial estimate are then modified to equal the separately estimated marginals, thereby providing an improved estimate of the joint posterior. We illustrate this method with several examples. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.