Abstract
Randomized clinical trials are considered as the gold standard for estimating causal effects. Nevertheless, in studies that are aimed at examining adverse effects of interventions, randomized trials are often impractical because of ethical and financial considerations. In observational studies, matching on the generalized propensity scores was proposed as a possible solution to estimate the treatment effects of multiple interventions. However, the derivation of point and interval estimates for these matching procedures can become complex with non-continuous or censored outcomes. We propose a novel Approximate Bayesian Bootstrap algorithm that results in statistically valid point and interval estimates of the treatment effects with categorical outcomes. The procedure relies on the estimated generalized propensity scores and multiply imputes the unobserved potential outcomes for each unit. In addition, we describe a corresponding interpretable sensitivity analysis to examine the unconfoundedness assumption. We apply this approach to examine the cardiovascular safety of common, real-world anti-diabetic treatment regimens for type 2 diabetes mellitus in a large observational database.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.