Abstract
We prove that if a set is ‘large’ in the sense of Erdős, then it approximates arbitrarily long arithmetic progressions in a strong quantitative sense. More specifically, expressing the error in the approximation in terms of the gap length $\Delta$ of the progression, we improve a previous result of $o(\Delta)$ to $O(\Delta^\alpha)$ for any $\alpha \in (0,1)$. This improvement comes from a new approach relying on an iterative application of Szemerédi's Theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.